skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Yiting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hurricane Patricia (2015) formed over the eastern North Pacific and is the most intense tropical cyclone (TC) on record with a maximum sustained wind speed of 95 m s−1, which presented a great forecasting challenge due to its unprecedented rapid intensification, record-breaking lifetime maximum intensity, and subsequent rapid weakening. The intensity and structure changes in Patricia were successfully simulated in a control experiment using a two-way interactive, quadruply nested version of the Weather Research and Forecasting Model with both initial and lateral boundary conditions from the Global Forecast System Final Analysis data. The successful simulation resulted from the inclusion of dissipative heating, realistic horizontal mixing length, and sea-spray-mediated heat flux. The relative contributions of these processes were assessed based on a series of ensemble-based sensitivity experiments and energetic diagnostics. Results show that dissipative heating and reduced horizontal mixing length had the most significant impacts on the intensification rate of Patricia after it reached an intensity of category 3, contributing 25.8% and 28.9% to the intensification rate and 11.7% and 14.1% to the lifetime maximum intensity, respectively. The contribution by spray-mediated heat flux increased significantly with wind speed, contributing up to 20.1% to the intensification rate and 20% to the surface energy flux under the eyewall at the wind speed of 90 m s−1. An alternative surface drag coefficient scheme and a constant surface roughness for moisture and heat were also tested and discussed via sensitivity experiments. The study provides insights into the physical processes key to successful simulations and forecasts of extremely strong TCs. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026